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Jamming transitions and avalanches in the game of Dots-and-Boxes
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We study the game of Dots-and-Boxes from a statistical point of view. The early game can be treated as a
case of random sequential adsorption, with a jamming transition that marks the beginning of the end game. We
derive a set of differential equations to make predictions about the state of the lattice at the transition, and thus
about the distribution of avalanches in the end game.
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Real-life games have traditionally inspired research byning of the end game limits the options available for the rest
mathematicians, economists, psychologists, computer scienf the game, and allows for predictions of the minimum
tists, and also physicists, starting with the development ofiumber of turns until the end of the game, the average size of
probability theory to handle games of char{de-3]. Later ~ avalanches, and so forth.
fields of research were economic game theerp|, where

usually two or more players have to make simultaneous and I. THE MODEL
independent decisions without knowing what the other
player is going to do, and combinatorial game theidy], As a model for the game that can be both simulated with

where players take alternating turns, and all information orreasonable computational effort and handled analytically, we

the state of the game and the possible future moves is availise the following rules of behavior for the players:

able. (1) Occupy squares if possiblén accordance with the
The popular children’s game of Dots-and-Boxes falls intorules that prescribe a greedy strategy, the active player

the latter category. The game is played on a rectangular lasearches the board for all free edges with an adjacent square

tice (a checkered sheet of papeaind players take alternating with exactly three occupied edges around it, picks one of

turns. At each turn, the active player occupies an edge. If hthem at random, occupies it, and continues his turn. This is

thus occupies the fourth edge of at least one of the two adepeated as often as possible.

jacent squares, the player continues the turn by placing an- (2) Create no opportunities for the opponetftthere are

other edge. Rules vary on whether a player must take a

square if he has the chance—the option not to take it allows _l_ —
for a number of subtle moved$or a guide to the end game of LI;AIJ —] }O O_ —_
Dots-and-Boxes, see Ré¢6], Vol. 2); however, for simplic-

O

ity, we demand that any chance to take a square must be O
used. The game ends when all edges and squares are occu-l_o |_ |
O O

pied. The player who took more squares wins.
| o
o _©O

The game can be separated into two distinct phases: in the
early game, players usually occupy edges more or less at

| o)
O
random. However, they avoid placing the third edge around | l_ '®)
o |

to score. Phase 1 ends when this is no longer possible: all
free edges have at least one adjacent square with two occu-
pied edges. This situation, which is shown in Fig. 1, is analo- |
gous to a jamming transition in models of random sequential o olo —l
adsorption(RSA). The main focus of this paper is the mod- —
eling of the early game, using methods from RSA theory and o ©
Monte Carlo simulations, and to determine the time and state O[O O|O O
of the game at the jamming transition. | |o

In the end game, squares are rapidly filled: each edge o | 0 o
creates an opportunity to score, which often triggers another
opportunity, and another, until the avalanche is terminated
somehow. The end game is largely determined by nonlocal FIG. 1. A typical state of the game at the transition from the
strategies(like figuring out what the shortest possible ava- early game to the end game. Empty circles mark single defects
lanches arg and thus not accessible to the methods used fofexplained in Sec. 1) closed circles denote double defects, and
the early game. However, the state of the game at the begishading denotes a closed area.

any square, which would give the opponent the opportunity |_
O O

O
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no squares to be taken, the player looks for free edges whog— T S T | :
adjacent squares both have less than two occupied edg(j ' ‘ ’ ‘ ’ \ : } ‘ ' ’ ‘ : ‘ ' ’

One of those is picked at random and occupied, and the turr] """ : | _____ : ‘ """ S ’ c ‘ T ’

ends. : A S : .

(3) Minimize the opponent’s scardf both prescriptions
(1) and (2) yield no suitable edge, the active player has 0 g 2. Free edges are classified according to the number of
pick the third edge around some square, thus giving his Opsccupied edges in adjacent squares. In all cases shown here, the
ponent a chance to take it according (. He checks all  central edgeédashed linghas the index 21. All possible configura-
edges to see how many points his opponent would gain fromions with the same inde) are assumed to have equal probabili-
them. He picks one of those that give away the smallesties.
number of points, occupies it, and ends the turn.

To get rid of boundary effects, the lattice on which theon the free edges surrounding its adjacent squares, except
game is played is assumed to have periodic boundary condihat one of their indices must be 1. Accordingly, we assume
tions. Furthermore, the analytical treatment is strictly valid inthat the other indexlet us say,j) follows a simple condi-
the limit of infinite lattice size only. tional probability, Prob,'(|i)=fij 12 Fik .-

The lattice hasN squares. Accordingly, the number of  |n the inititial phase of the game, there is an extensive
edges is Rl. The number of turns is counted Bl The  number of edges that can be occupied without giving the
rescaled time=T/2N runs from 0 to at most 1; however, opponent an opportunity to score, following prescript{@
since more than one edge per turn is occupied in the engf the strategy. These are edges from the categories 00, 10,
game, the game ends at times1. Two other useful quan- 01, and 11. Now we can see what happens tofthef an
tities to describe the system are the numBeof occupied edge is occupied, i.e., a time stejt=1/2N elapses. The
edges(or p=P/2N, the probability that a given edge is oc- chosen edgéet us say, it has indiced) is occupied, and,,
cupied, and the number of filled squar&s(or s=S/N, re- s decreased byif,,=1/2N. This means that for all edges

spectively. that can be chosen, the differential equationfigiincludes a
loss term equal to the probability that an edge with inBex
II. THE EARLY GAME Is picked:
As mentioned in the Introduction, the early game can be dfy  fy
treated as a special case of RE. The basic idea of RSA T, for k{01, 1

is to deposit particlegsatoms, dimers or, in our case, edges

on randomly chosen sites of a surfa@ten on a regular wheref; is the density of edges that can be occupied before
lattice) unless this deposition violates restrictions posed byhe transition,

particles that were adsorbed before. In Dots-and-Boxes, the

edges form a square lattice with a peculiar short-range three- fr="Foot+ fort frot f1y. 2
particle repulsion.

The usual procedure to treat RSA problems analytically isthe free edges in the squares next to the chosen edge must
to solve a set of coupled differential equatiocl@®DES that  he ypdated: the index corresponding to the considered square
describe the probability of encountering the various possiblgs increased by one. For instance, assume that the upper/left
configurations of particlegfor details, see Ref8]). Unfor- adjacent square of the chosen edge has occupation number 0
tunately, this set of ODEs is generally not closed, i.e., the{which happens with probabilityfgo+ f1)/f¢]. Two of the
equations for small configurations include probabilities ofipree remaining edges around that square will then have their
larger configuration, which in turn depend on still larger con-gecond index increased by one, whereas one will have its

figurations. At some point, one has to neglect correlationgjrst index incremented. This leads to gain and loss terms in
and truncate the equations. Since the number of terms ifne ODES:

creases dramatically with increasing order of truncation, we

will use the simplest approximation that still captures the fio  footfor

interaction correctly. fio:—2— r ,
This approximation characterizes each free edge by two E f f

indices—the first index for the number of occupied edges &o O

surrounding the adjacent square above or to the left of the

considered edge, the second ingiégr the occupation num- foi  footfor
ber of the square below or to the rigtior example, Fig. 2 foii— — - ,
shows all configurations with index 21 around a horizontal Z f f
edge. One can then count the numbig; of free edges with & %

indicesij, and determine their densify; = F;/2N.

All possible configurations with the same indices are now fio  footfor
assumed to have the same probability, and correlations be- fi1:+2— T
yond nearest neighbors are neglected. For example, if we 2 fro f
consider a free edge with index 11, we have no information k=0
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1 : ; . . TABLE |. Order parameters at the jamming transition for the
fo theory square lattice.
08 1 e 1 Theory Simulation
1
T t 0.4615 0.4657
o8 B simulation, N=400? 1 f22 0.3244 0.3409
W o f o far 0.0901 0.0846
04 | °fu J fao 0.0169 0.0121
< fao )
+ far rd
* £, w,x’
02 ecaneon, # 1 wheref; becomes zero and the early game ends. The accu-
o M""‘;A ans e eppt i racy could probably be improved by including probabilies of
o g R LY SEoerastta, larger configurations; however, it is not worth the effort,
00 0.1 0.2 0.3 0.4 05 since the calculated numbers agree with results from real
¢ ¢ play only in the order of magnitude anywdgee Sec. V.

! The predictions and numerical values for the jamming time

FIG. 3. Comparison between the numerical solution of thet; and the order parameters at that time are given in Table I.
ODEs and a simulation witlN=400x 400.
IIl. THE END GAME

foi  footf
fiii+— o oof_cu_ (3) When the last edge from the categories 00, 01, 10, and 11
2 f f has been taken, prescriptig®) is no longer an option. The
e game now alternates between prescriptith)sand(3). Each

player’s turn begins by filling the squares of the avalanche
What follows is a rather tedious summation of terms for thethat his opponent has offered him by placing the third edge
possible combinations of indices. around some squargrescription(1)]. When all possible
The equations derived in this fashion can be simplifiedsquares have been taken, the active player now determines
considerably by assuming the symmetry=f;; , thus keep- the avalanche that his opponent must thkescription(3)].

ing only the categories with=j. With the abbreviations Since the length of the avalanche triggered by placing an
edge is not a local property of that edgend highly corre-
ro=(foot+ f10)/(foot f10t f20), (4 lated to that of neighboring edges description by differ-
ential equations analogous to the early game makes little
r1=(f1ot+f1)/(fro+frat+fa0), (5 sense. However, since the state of the system at the transition

, ) , , largely determines the options of the players later on, we can
the resulting system of differential equations looks as fol-,ake quantitative predictions about the end game from the

lows: knowledge gained in Sec. Il.
df Figure 1 shows the state of a game with<IB squares at
_002(_]« —6f o o)/ f the jamming transition. The squares are segments of a tunnel
dt 00 00' 0 fo . .
if they have two occupied edges. They represent tunnel

branchings(or single defectsmarked by empty circlgsif

dfio_ they have only one edge, and tunnel crossitmsdouble

(—F1o+3fogro—=3f10ro—2F10r 1)/ 5,

dt defects marked by full circlegif they have none.

Thus, three edges from thie, category form a single
dfy; defect, whereas four,, edges make up a double defect. The
¢ = (~fut6fig o= 4fura/fy, density of defects can be calculated directly from the order

parameters at the transition.
df,g As an additional check, one can make sure that the total
el (—=3fygrgt+2figra)/fs, number of edgethoth occupied and freeadd up to A, and
that the number of squarésinnels and defeckadd up toN.
dfy This leads to the following equations:
T (—2fpqrq+2f1r1+3f5q0)/ fs, {4 2y 265t Fpe L, @
%22=4f21r1/ff. ® 3f o0+ (10/3)f py+ 2f =1, )

which are fulfilled for both the analytical and the experimen-
This can be solved numerically and compared to simulationgal values.
as seen in Fig. 3. The agreement is very good, but becomes This enables us to make some statements about the ava-
slightly worse close to the jamming transition—the pointlanches or chains of occupied squares that occur in the late
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o 8 P (1), simulation
Cl+1) exp(=U/1)
- P (1), closed areas

01} U

Ped(l)

0.05

FIG. 4. Probablility distributiorP.4(l) of avalanche lengthisat
the jamming transition, averaged over randomly chosen free edges. FIG. 5. Time development of fraction of occupied edgep4nd
Simulations average over 40 runs wih=50x 50. squares §) in a simulation on an 8880 lattice.

game. An avalanche started in a tunnel fills the tunnel and The density of defects at the transition allows us for a
ends at the defect edges on both sides of the tunnel. ThuBrediction of the total number of turns in the end game.
with 4N(fy+f,) defect edges, there are at leasf When an avalanche is terminated at a defect, that defect is
=2N(f+f,q) different potential avalanches at the time of turned into a tunnel segmeit it was a single defect befoye

the transition.(For now, we neglect avalanches in closedOr into a single defectif it was a double defegt Therefore
areas and other complicationde can also calculate the the number of defect-terminated avalancheg  is half the
number of tunnel segmentsquares with occupation om  number of single defects plus the number of double defects:

the order parameterbt;=N— (4/3)Nf,;— Nf,y. This yields _ _
an average length of the tunnel segmentdlpfN,~4.5 for Nora=[(2/3)T211 2]/N~0.06N. (10

the values offj; from the simulation, as given above. This means that the time difference framto the end of the

Note that in an analogy to the “waiting time paradox,” gametg should be at least
the average avalanche length becomes larger than the men-
tioned value of 4.5 if avalanches are started at randomly te—t;=Np1a/2N=0.034. (12)
chosen edges rather than randomly chosen tunnel segments,
because longer tunnels include more edges and are thus cHdowever, this is really only a lower bound on the time found
sen with higher probability in simulationstgz—t;~0.054. The reason for the deviation is

Let us assume that the probability distributibg, () of  the existence of avalanches that do not change the number of
tunnel lengthsd follows an exponential with a decay constant defects, namely, avalanches in closed areas. These areas are
11*. Sincel=1, the normalization constant is exd(ly  not necessarily present at the beginning of the end game.

—1, and the average value is Instead, they may initially be half-closed areas: areas that are
not quite closed, but connected to the rest of the system by a
o 1 single defect. Depending on whether the avalanche is started

Nay=2 1" 1) = —— (9 in the tunnel outside the half-closed area or inside it, it is

=1 1-e either turned into a closed area, or it is filled, the defect is

. _ _ N removed, and the adjacent tunnel is filled as well. Since it is
With the mentioned value ofl);,=4.5, one getd*~4.0 ,q5)ly desirable to give the opponent as few points as pos-

and Py, (1)~0.284 exp(-1/4.00). Since each tunnel ava- gjhje most of the half-closed areas in real play will be turned
lanche ofl squares length hast1 edges where it can be jnio closed areas. and then filled.

started, the probability distribution of avalanche lengths Apart from these exceptions, avalanches tend to get dra-

averaged over free edges follows the forRyq(l)<(l  matically longer as the end game goed®ee Fig. 5. This is

+ 1)e_xp(—|/|*). ) L ) o due to two effects: First, small avalanches are triggered ear-
This agrees fairly well with simulations, as seen in Fig. 4.jier than larger ones due to prescriptié8), and thus re-

However, there is a preference for even avalanche lengthg,oyed; second, avalanches that stop at a single defect turn it
which can partly be explained with the presenceclosed g 4 tunnel segment, merging two potential avalanches into
areas These are areas that contain no defects and are sepghe.

rated from the rest of the board by occupied edges. They
include an even numbee(4) of squares. The probability of
an edge being in a closed area of size shown in Fig. 4
(open circles Even if it is taken into account, even ava- The game can be played on lattices other than the square,
lanches are more likely, for reasons that are still unclear. as long as there is a notion of an edge separating two cells,

IV. OTHER LATTICES
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FIG. 6. Comparison between the analytical solufiggs.(15)—
(18)] of the ODEs and a simulation on a triangular lattice with
=20000.

and placing a single edge is not enough to make scorin

possible. The simplest case is the triangular lattice, wher

there are only single defects, and the relevant order para
eters in the early game affgy, fio, andfyy. The corre-
sponding differential equations are

%: _1_ —foo (12)
dt foot+f1o’
@: foo—f10 (13
ill: f10 (14)
dt foot 10

They can even be solved analytically by introducing a res
caled timer with dr=(foo+ f10) ~1dt, and solving the re-
maining system of linear ODEs im with constant coeffi-
cients. One gets

foo( ) =€"47(2—¢7), (15)
fio(7)=2€"47(e™=1), (16)
fi(7)=2e 47— (8/3)e 37+ 2/3. (17)

Using Eqgs.(15) and(16), t can be calculated:
t(r)=(1-e3)/3; 7(t)=—(1/3)In(1-3t). (18

PHYSICAL REVIEW E 65 066108

TABLE Il. Order parameters at the transition for the triangular
lattice.

Theory Simulation
t; 7/24=0.291 667 0.293# 0.0002
fio 1/8=0.125 0.120%:0.0003
f11 11/24=0.458 33 0.465% 0.0002

cubic lattice, since both have six edges/faces surrounding
each hexagon/cube. Although structurally simple, the equa-
tions involve 15 order parameters and are not written out for
the sake of brevity.

Of course, the whole range from single to quadruple de-
fects can occur; however, multiple defects are rarer than
single ones, as seen in Table lll. Results from simulations
confirm the picture predicted by calculations, with the usual
deviations of the order of 1G.

Is the game still interesting on other lattices? Disregarding
the practical difficulties of playing on a 3D cubic lattice, all
basic mechanisms of the game still work, including closed
and half-closed areas. A rough estimate shows that the initial
Qvalanche lengtitaveraged over possible avalanchiss4.8
for the triangular lattice and 3.6 for the 3D cubic and hex-

rT?:{gonal lattice, similar to the square lattice. We therefore ex-

pect that real-life games on other lattices would not be much
different from Dots-and-Boxes on regular square lattices.

V. COMPARISON TO REAL PLAY

We let some co-workers play a computer version of Dots-
and-Boxes(with periodic boundary conditions and=10
X 10) to see if their style of play is well described by the
assumptions in Sec. |. Generally speaking, human players
did not place edges at random in the early game; instead they
tended to add edges to existing structures. In some cases, this
led to a significantly lower number of defects, and thus
longer avalanches. One pair of players chose to get rid of the
periodic boundary conditions by drawing a frame around the
board early in the game.

Nevertheless, some games showed quantitative similari-
ties to our theoretical predictions. The order parameters from
one of these games are shown in Figs. 7 and 8.

Our test players did not try tactical subtleties, such as
adjusting the number of avalanches in order to get the last
(and presumably longesbne. They were usually happy if

TABLE lIl. Order parameters for the 3D cubic and hexagonal
lattice.

) . . . Theory Simulation 3D Simulation hexagonal

Again, agreement between theory and simulation is very
good, as seen in Fig. 6. The predicted and observed values t; 0.6367 0.638%0.0001 0.635%0.0001
for the jamming transition and the order parameters are given f,, 0.00017 0.000180.00003  0.000 30 0.000 03
in Table II. fu,u  0.0027 0.0022-0.00001 0.0036:0.0001

Other possible lattices include hexagonal and three- f,, 0.0177 0.0162:0.0002 0.0198 0.0002
dimensional3D) cubic lattices. In the latter case, edges cor- f,, 0.0577  0.057 230.0002 0.0579 0.0002
respond to faces of unit cubes. Interestingly, the differential ,,  0.2064 0.210% 0.0002 0.2018 0.0002

equations are the same for both the hexagonal and the 3B
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FIG. 7. Comparison between a simulation wiik=80x 80 and FIG. 8. The remaining order parameters of the game shown in

a real-life game on a 1010 lattice. To avoid confusion, only the Fig. 7.

curves forf g, f19, f11, and the density of filled squaress shown o
in this figure(see also Fig. B quantity is the number of edges or faces around a cell, such

that hexagonal and 3D cubic lattices are described by the

they avoided blatant mistakes. same equatior_ls._ .
Of course, one could include human tendencies and ex- Thesg pred|ct|ons allow us to make statements regarding

tend the model to includeooperative sequential adsorption the St"?‘t'Str'lCS of davalanchei, as well as tr;e }otal dnum dbehr ﬁf

[8], where edges are preferably placed next to edges occ{d’ns In the end game. The presence of closed and half-

pied before. However, since this could not describe all hu_closed areas makes the situation more complicated; unfortu-

man players with the same set of parameters and would profi2t€ly; they cannot be captured by the approximations made

ably give no qualitative new insights, the usefulness of thid" the calculation of the early game. .
extension is questionable. While results from calculations give good agreement with

simulations, human players have various habits that cannot
be easily included in an all-encompassing mean-field treat-
VI. SUMMARY AND CONCLUSION ment(“l like making corners. They look nice). Thus, while

We gave a statistical treatment of the game of Dots-and®" analysis has yielded some insight in the underlying pro-

Boxes, using some simplifying assumptions for the behaviof 5S¢ of Dots-and-Boxes, quantitative agreement with hu-
of the players. In the early game, since a finite fraction ofnan play is not always satisfactory.

edges can be chosen., a mgan—fleld Qescrlptlon given by a ACKNOWLEDGMENTS
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