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Jamming transitions and avalanches in the game of Dots-and-Boxes
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We study the game of Dots-and-Boxes from a statistical point of view. The early game can be treated as a
case of random sequential adsorption, with a jamming transition that marks the beginning of the end game. We
derive a set of differential equations to make predictions about the state of the lattice at the transition, and thus
about the distribution of avalanches in the end game.
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Real-life games have traditionally inspired research
mathematicians, economists, psychologists, computer sc
tists, and also physicists, starting with the developmen
probability theory to handle games of chance@1–3#. Later
fields of research were economic game theory@4,5#, where
usually two or more players have to make simultaneous
independent decisions without knowing what the oth
player is going to do, and combinatorial game theory@6,7#,
where players take alternating turns, and all information
the state of the game and the possible future moves is a
able.

The popular children’s game of Dots-and-Boxes falls in
the latter category. The game is played on a rectangular
tice ~a checkered sheet of paper!, and players take alternatin
turns. At each turn, the active player occupies an edge. I
thus occupies the fourth edge of at least one of the two
jacent squares, the player continues the turn by placing
other edge. Rules vary on whether a player must tak
square if he has the chance—the option not to take it allo
for a number of subtle moves~for a guide to the end game o
Dots-and-Boxes, see Ref.@6#, Vol. 2!; however, for simplic-
ity, we demand that any chance to take a square mus
used. The game ends when all edges and squares are
pied. The player who took more squares wins.

The game can be separated into two distinct phases: in
early game, players usually occupy edges more or les
random. However, they avoid placing the third edge arou
any square, which would give the opponent the opportun
to score. Phase 1 ends when this is no longer possible
free edges have at least one adjacent square with two o
pied edges. This situation, which is shown in Fig. 1, is ana
gous to a jamming transition in models of random sequen
adsorption~RSA!. The main focus of this paper is the mo
eling of the early game, using methods from RSA theory a
Monte Carlo simulations, and to determine the time and s
of the game at the jamming transition.

In the end game, squares are rapidly filled: each e
creates an opportunity to score, which often triggers ano
opportunity, and another, until the avalanche is termina
somehow. The end game is largely determined by nonlo
strategies~like figuring out what the shortest possible av
lanches are!, and thus not accessible to the methods used
the early game. However, the state of the game at the be
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ning of the end game limits the options available for the r
of the game, and allows for predictions of the minimu
number of turns until the end of the game, the average siz
avalanches, and so forth.

I. THE MODEL

As a model for the game that can be both simulated w
reasonable computational effort and handled analytically,
use the following rules of behavior for the players:

~1! Occupy squares if possible. In accordance with the
rules that prescribe a greedy strategy, the active pla
searches the board for all free edges with an adjacent sq
with exactly three occupied edges around it, picks one
them at random, occupies it, and continues his turn. Thi
repeated as often as possible.

~2! Create no opportunities for the opponent. If there are

FIG. 1. A typical state of the game at the transition from t
early game to the end game. Empty circles mark single def
~explained in Sec. III!, closed circles denote double defects, a
shading denotes a closed area.
©2002 The American Physical Society08-1
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RICHARD METZLER AND ANDREAS ENGEL PHYSICAL REVIEW E65 066108
no squares to be taken, the player looks for free edges w
adjacent squares both have less than two occupied ed
One of those is picked at random and occupied, and the
ends.

~3! Minimize the opponent’s score. If both prescriptions
~1! and ~2! yield no suitable edge, the active player has
pick the third edge around some square, thus giving his
ponent a chance to take it according to~1!. He checks all
edges to see how many points his opponent would gain f
them. He picks one of those that give away the smal
number of points, occupies it, and ends the turn.

To get rid of boundary effects, the lattice on which t
game is played is assumed to have periodic boundary co
tions. Furthermore, the analytical treatment is strictly valid
the limit of infinite lattice size only.

The lattice hasN squares. Accordingly, the number o
edges is 2N. The number of turns is counted byT. The
rescaled timet5T/2N runs from 0 to at most 1; howeve
since more than one edge per turn is occupied in the
game, the game ends at timest,1. Two other useful quan
tities to describe the system are the numberP of occupied
edges~or p5P/2N, the probability that a given edge is oc
cupied!, and the number of filled squaresS ~or s5S/N, re-
spectively!.

II. THE EARLY GAME

As mentioned in the Introduction, the early game can
treated as a special case of RSA@8#. The basic idea of RSA
is to deposit particles~atoms, dimers or, in our case, edge!
on randomly chosen sites of a surface~often on a regular
lattice! unless this deposition violates restrictions posed
particles that were adsorbed before. In Dots-and-Boxes,
edges form a square lattice with a peculiar short-range th
particle repulsion.

The usual procedure to treat RSA problems analyticall
to solve a set of coupled differential equations~ODEs! that
describe the probability of encountering the various poss
configurations of particles~for details, see Ref.@8#!. Unfor-
tunately, this set of ODEs is generally not closed, i.e.,
equations for small configurations include probabilities
larger configuration, which in turn depend on still larger co
figurations. At some point, one has to neglect correlati
and truncate the equations. Since the number of terms
creases dramatically with increasing order of truncation,
will use the simplest approximation that still captures t
interaction correctly.

This approximation characterizes each free edge by
indices—the first indexi for the number of occupied edge
surrounding the adjacent square above or to the left of
considered edge, the second indexj for the occupation num-
ber of the square below or to the right~for example, Fig. 2
shows all configurations with index 21 around a horizon
edge!. One can then count the numberFi j of free edges with
indicesi j , and determine their densityf i j 5Fi j /2N.

All possible configurations with the same indices are n
assumed to have the same probability, and correlations
yond nearest neighbors are neglected. For example, if
consider a free edge with index 11, we have no informat
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on the free edges surrounding its adjacent squares, ex
that one of their indices must be 1. Accordingly, we assu
that the other index~let us say,j ) follows a simple condi-
tional probability, Prob(j u i )5 f i j /(kf ik .

In the inititial phase of the game, there is an extens
number of edges that can be occupied without giving
opponent an opportunity to score, following prescription~2!
of the strategy. These are edges from the categories 00
01, and 11. Now we can see what happens to thef i j if an
edge is occupied, i.e., a time stepdt51/2N elapses. The
chosen edge~let us say, it has indiceskl) is occupied, andf kl
is decreased byd fkl51/2N. This means that for all edge
that can be chosen, the differential equation forf kl includes a
loss term equal to the probability that an edge with indexkl
is picked:

d fkl

dt
52

f kl

f f
1••• for k,l P$0,1%, ~1!

where f f is the density of edges that can be occupied bef
the transition,

f f5 f 001 f 011 f 101 f 11. ~2!

The free edges in the squares next to the chosen edge
be updated: the index corresponding to the considered sq
is increased by one. For instance, assume that the uppe
adjacent square of the chosen edge has occupation num
@which happens with probability (f 001 f 01)/ f f#. Two of the
three remaining edges around that square will then have t
second index increased by one, whereas one will have
first index incremented. This leads to gain and loss term
the ODEs:

f i0 :22
f i0

(
k50

2

f k0

f 001 f 01

f f
,

f 0i :2
f 0i

(
k50

2

f 0k

f 001 f 01

f f
,

f i1 :12
f i0

(
k50

2

f k0

f 001 f 01

f f
,

FIG. 2. Free edges are classified according to the numbe
occupied edges in adjacent squares. In all cases shown here
central edge~dashed line! has the index 21. All possible configura
tions with the same indexi j are assumed to have equal probab
ties.
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f 1i :1
f 0i

(
k50

2

f 0k

f 001 f 01

f f
. ~3!

What follows is a rather tedious summation of terms for
possible combinations of indices.

The equations derived in this fashion can be simplifi
considerably by assuming the symmetryf i j 5 f j i , thus keep-
ing only the categories withi> j . With the abbreviations

r 05~ f 001 f 10!/~ f 001 f 101 f 20!, ~4!

r 15~ f 101 f 11!/~ f 101 f 111 f 21!, ~5!

the resulting system of differential equations looks as f
lows:

d f00

dt
5~2 f 0026 f 00r 0!/ f f ,

d f10

dt
5~2 f 1013 f 00r 023 f 10r 022 f 10r 1!/ f f ,

d f11

dt
5~2 f 1116 f 10r 024 f 11r 1!/ f f ,

d f20

dt
5~23 f 20r 012 f 10r 1!/ f f ,

d f21

dt
5~22 f 21r 112 f 11r 113 f 20r 0!/ f f ,

d f22

dt
54 f 21r 1 / f f . ~6!

This can be solved numerically and compared to simulatio
as seen in Fig. 3. The agreement is very good, but beco
slightly worse close to the jamming transition—the po

FIG. 3. Comparison between the numerical solution of
ODEs and a simulation withN54003400.
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where f f becomes zero and the early game ends. The a
racy could probably be improved by including probabilies
larger configurations; however, it is not worth the effo
since the calculated numbers agree with results from
play only in the order of magnitude anyway~see Sec. V!.
The predictions and numerical values for the jamming ti
tJ and the order parameters at that time are given in Tab

III. THE END GAME

When the last edge from the categories 00, 01, 10, and
has been taken, prescription~2! is no longer an option. The
game now alternates between prescriptions~1! and~3!. Each
player’s turn begins by filling the squares of the avalanc
that his opponent has offered him by placing the third ed
around some square@prescription ~1!#. When all possible
squares have been taken, the active player now determ
the avalanche that his opponent must take@prescription~3!#.
Since the length of the avalanche triggered by placing
edge is not a local property of that edge~and highly corre-
lated to that of neighboring edges!, a description by differ-
ential equations analogous to the early game makes l
sense. However, since the state of the system at the trans
largely determines the options of the players later on, we
make quantitative predictions about the end game from
knowledge gained in Sec. II.

Figure 1 shows the state of a game with 15315 squares at
the jamming transition. The squares are segments of a tu
if they have two occupied edges. They represent tun
branchings~or single defects, marked by empty circles! if
they have only one edge, and tunnel crossings~or double
defects, marked by full circles! if they have none.

Thus, three edges from thef 21 category form a single
defect, whereas fourf 20 edges make up a double defect. T
density of defects can be calculated directly from the or
parameters at the transition.

As an additional check, one can make sure that the t
number of edges~both occupied and free! add up to 2N, and
that the number of squares~tunnels and defects! add up toN.
This leads to the following equations:

tJ12 f 2012 f 211 f 2251, ~7!

3 f 201~10/3! f 2112 f 2251, ~8!

which are fulfilled for both the analytical and the experime
tal values.

This enables us to make some statements about the
lanches or chains of occupied squares that occur in the

TABLE I. Order parameters at the jamming transition for t
square lattice.

Theory Simulation

tJ 0.4615 0.4657
f 22 0.3244 0.3409
f 21 0.0901 0.0846
f 20 0.0169 0.0121

e

8-3
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RICHARD METZLER AND ANDREAS ENGEL PHYSICAL REVIEW E65 066108
game. An avalanche started in a tunnel fills the tunnel
ends at the defect edges on both sides of the tunnel. T
with 4N( f 211 f 20) defect edges, there are at leastNA
52N( f 211 f 20) different potential avalanches at the time
the transition.~For now, we neglect avalanches in clos
areas and other complications.! We can also calculate th
number of tunnel segments~squares with occupation 2! from
the order parameters:NT5N2(4/3)N f212N f20. This yields
an average length of the tunnel segments ofNT /NA'4.5 for
the values off i j from the simulation, as given above.

Note that in an analogy to the ‘‘waiting time paradox
the average avalanche length becomes larger than the
tioned value of 4.5 if avalanches are started at rando
chosen edges rather than randomly chosen tunnel segm
because longer tunnels include more edges and are thus
sen with higher probability

Let us assume that the probability distributionPav( l ) of
tunnel lengthsl follows an exponential with a decay consta
1/l * . Since l>1, the normalization constant is exp(1/l * )
21, and the average value is

^ l &av5(
l 51

`

l ~e1/l* 21!e2 l / l* 5
1

12e21/l* . ~9!

With the mentioned value of̂l &av54.5, one getsl * '4.0
and Pav( l )'0.284 exp(2l/4.00). Since each tunnel ava
lanche of l squares length hasl 11 edges where it can b
started, the probability distribution of avalanche leng
averaged over free edges follows the formPed( l )}( l
11)exp(2l/l* ).

This agrees fairly well with simulations, as seen in Fig.
However, there is a preference for even avalanche leng
which can partly be explained with the presence ofclosed
areas. These are areas that contain no defects and are s
rated from the rest of the board by occupied edges. T
include an even number (>4) of squares. The probability o
an edge being in a closed area of sizel is shown in Fig. 4
~open circles!. Even if it is taken into account, even av
lanches are more likely, for reasons that are still unclear

FIG. 4. Probablility distributionPed( l ) of avalanche lengthsl at
the jamming transition, averaged over randomly chosen free ed
Simulations average over 40 runs withN550350.
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The density of defects at the transition allows us for
prediction of the total number of turns in the end gam
When an avalanche is terminated at a defect, that defe
turned into a tunnel segment~if it was a single defect before!
or into a single defect~if it was a double defect!. Therefore
the number of defect-terminated avalanchesNDTA is half the
number of single defects plus the number of double defe

NDTA5@~2/3! f 211 f 20#/N'0.069N. ~10!

This means that the time difference fromtJ to the end of the
gametE should be at least

tE2tJ>NDTA/2N50.034. ~11!

However, this is really only a lower bound on the time fou
in simulations,tE2tJ'0.054. The reason for the deviation
the existence of avalanches that do not change the numb
defects, namely, avalanches in closed areas. These area
not necessarily present at the beginning of the end ga
Instead, they may initially be half-closed areas: areas that
not quite closed, but connected to the rest of the system
single defect. Depending on whether the avalanche is sta
in the tunnel outside the half-closed area or inside it, it
either turned into a closed area, or it is filled, the defec
removed, and the adjacent tunnel is filled as well. Since i
usually desirable to give the opponent as few points as p
sible, most of the half-closed areas in real play will be turn
into closed areas, and then filled.

Apart from these exceptions, avalanches tend to get
matically longer as the end game goes on~see Fig. 5!. This is
due to two effects: First, small avalanches are triggered
lier than larger ones due to prescription~3!, and thus re-
moved; second, avalanches that stop at a single defect tu
into a tunnel segment, merging two potential avalanches
one.

IV. OTHER LATTICES

The game can be played on lattices other than the squ
as long as there is a notion of an edge separating two c

es. FIG. 5. Time development of fraction of occupied edges (p) and
squares (s) in a simulation on an 80380 lattice.
8-4
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and placing a single edge is not enough to make sco
possible. The simplest case is the triangular lattice, wh
there are only single defects, and the relevant order par
eters in the early game aref 00, f 10, and f 11. The corre-
sponding differential equations are

d f00

dt
52124

f 00

f 001 f 10
, ~12!

d f10

dt
52

f 002 f 10

f 001 f 10
, ~13!

d f11

dt
54

f 10

f 001 f 10
. ~14!

They can even be solved analytically by introducing a r
caled timet with dt5( f 001 f 10)

21dt, and solving the re-
maining system of linear ODEs int with constant coeffi-
cients. One gets

f 00~t!5e24t~22et!, ~15!

f 10~t!52e24t~et21!, ~16!

f 11~t!52e24t2~8/3!e23t12/3. ~17!

Using Eqs.~15! and ~16!, t can be calculated:

t~t!5~12e23t!/3; t~ t !52~1/3!ln~123t !. ~18!

Again, agreement between theory and simulation is v
good, as seen in Fig. 6. The predicted and observed va
for the jamming transition and the order parameters are g
in Table II.

Other possible lattices include hexagonal and thr
dimensional~3D! cubic lattices. In the latter case, edges c
respond to faces of unit cubes. Interestingly, the differen
equations are the same for both the hexagonal and the

FIG. 6. Comparison between the analytical solution@Eqs.~15!–
~18!# of the ODEs and a simulation on a triangular lattice withN
520 000.
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cubic lattice, since both have six edges/faces surround
each hexagon/cube. Although structurally simple, the eq
tions involve 15 order parameters and are not written out
the sake of brevity.

Of course, the whole range from single to quadruple
fects can occur; however, multiple defects are rarer th
single ones, as seen in Table III. Results from simulatio
confirm the picture predicted by calculations, with the us
deviations of the order of 1023.

Is the game still interesting on other lattices? Disregard
the practical difficulties of playing on a 3D cubic lattice, a
basic mechanisms of the game still work, including clos
and half-closed areas. A rough estimate shows that the in
avalanche length~averaged over possible avalanches! is 4.8
for the triangular lattice and 3.6 for the 3D cubic and he
agonal lattice, similar to the square lattice. We therefore
pect that real-life games on other lattices would not be m
different from Dots-and-Boxes on regular square lattices

V. COMPARISON TO REAL PLAY

We let some co-workers play a computer version of Do
and-Boxes~with periodic boundary conditions andN510
310) to see if their style of play is well described by th
assumptions in Sec. I. Generally speaking, human play
did not place edges at random in the early game; instead
tended to add edges to existing structures. In some cases
led to a significantly lower number of defects, and th
longer avalanches. One pair of players chose to get rid of
periodic boundary conditions by drawing a frame around
board early in the game.

Nevertheless, some games showed quantitative simi
ties to our theoretical predictions. The order parameters fr
one of these games are shown in Figs. 7 and 8.

Our test players did not try tactical subtleties, such
adjusting the number of avalanches in order to get the
~and presumably longest! one. They were usually happy i

TABLE II. Order parameters at the transition for the triangu
lattice.

Theory Simulation

tJ 7/2450.291 667 0.293060.0002
f 10 1/850.125 0.120960.0003
f 11 11/2450.458 33 0.465560.0002

TABLE III. Order parameters for the 3D cubic and hexagon
lattice.

Theory Simulation 3D Simulation hexagona

tJ 0.6367 0.638160.0001 0.635160.0001
f 40 0.000 17 0.000 1060.000 03 0.000 3060.000 03
f 41 0.0027 0.002260.00001 0.003660.0001
f 42 0.0177 0.016260.0002 0.019860.0002
f 43 0.0577 0.057 2360.0002 0.057960.0002
f 44 0.2064 0.210560.0002 0.201860.0002
8-5



e
n
cc
hu
ro
hi

nd
io
o
y
It

t a
m

an

uch
the

ing
r of
alf-
rtu-
ade

ith
not
at-

ro-
hu-

e
in-
.

e
n in

RICHARD METZLER AND ANDREAS ENGEL PHYSICAL REVIEW E65 066108
they avoided blatant mistakes.
Of course, one could include human tendencies and

tend the model to includecooperative sequential adsorptio
@8#, where edges are preferably placed next to edges o
pied before. However, since this could not describe all
man players with the same set of parameters and would p
ably give no qualitative new insights, the usefulness of t
extension is questionable.

VI. SUMMARY AND CONCLUSION

We gave a statistical treatment of the game of Dots-a
Boxes, using some simplifying assumptions for the behav
of the players. In the early game, since a finite fraction
edges can be chosen, a mean-field description given b
system of coupled differential equations works well.
makes predictions about the point where avalanches star
the degree of geometrical frustration at that point. The sa
scheme works for all kinds of regular lattices; the relev

FIG. 7. Comparison between a simulation withN580380 and
a real-life game on a 10310 lattice. To avoid confusion, only th
curves forf 00, f 10, f 11, and the density of filled squaresp is shown
in this figure~see also Fig. 8!.
i)
n,

L
,
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quantity is the number of edges or faces around a cell, s
that hexagonal and 3D cubic lattices are described by
same equations.

These predictions allow us to make statements regard
the statistics of avalanches, as well as the total numbe
turns in the end game. The presence of closed and h
closed areas makes the situation more complicated; unfo
nately, they cannot be captured by the approximations m
in the calculation of the early game.

While results from calculations give good agreement w
simulations, human players have various habits that can
be easily included in an all-encompassing mean-field tre
ment~‘‘I like making corners. They look nice.’’!. Thus, while
our analysis has yielded some insight in the underlying p
cesses of Dots-and-Boxes, quantitative agreement with
man play is not always satisfactory.
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FIG. 8. The remaining order parameters of the game show
Fig. 7.
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